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ABSTRACT 

The interaction between predation and anti-predator defenses of prey is important 

in shaping community structure in all ecosystems.  This study examined the relationship 

between sponge predation and the distribution of sponge anti-predator defenses on 

temperate reefs in the South Atlantic Bight.  Significant differences in the distribution of 

sponge species, sponge densities, and densities of sponge predators were documented 

across two adjacent reef habitats.  Significant differences also occurred in the distribution 

of sponge chemical and structural defenses with chemical deterrence significantly greater 

in sponges associated with the habitat having higher predation intensity.  Structural 

defenses, although effective in some instances, appear to be inadequate against 

spongivorous predators thereby restricting the distribution of sponge species lacking 

chemical defenses to habitats with lower predation intensity.  These results, when 

compared to published data from tropical studies, also indicate that predation pressure 

and the production of anti-predator defenses may be inversely correlated with latitude.   
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CHAPTER 1 

SPONGE COMMUNITY STRUCTURE AND ANTI-PREDATOR DEFENSES ON 

TEMPERATES REEFS OF THE SOUTH ATLANTIC BIGHT 

Introduction 

Predation is an important source of mortality in marine ecosystems and plays a 

significant role in shaping community structure (Hixon 1997).  A variety of 

morphological, physiological, and behavioral adaptations have evolved to deter predators 

in marine habitats (Vermeij 1978; Menge and Lubchencho 1981; Paul 1992; Pennings 

and Paul 1992).  An effective anti-predator mechanism that is becoming better 

understood is secondary metabolites (Paul 1992; Bolser and Hay 1996; Pawlik 1997).  A 

variety of species employ secondary metabolites as a chemical defense and their 

widespread use has been documented in tropical (Bolser and Hay 1996), temperate, 

(Wright et al. 1997; Becerro et al. 2003) and polar benthic communities (McClintock 

1987).  Studies involving marine algae, soft corals, tunicates and sponges have also 

demonstrated that physical defenses may work independently or in conjunction with 

chemical defenses to inhibit predation (Harvell et al. 1988; Pennings and Paul 1992; 

Schupp and Paul 1994; Uriz et al. 1996; Burns and Ilan 2003; Hill et al. 2005).  

Mineralized elements such as calcium carbonate, siliceous spicules, and organic, 

proteinaceous fibers may reduce predation by providing a protective outer membrane 

(Hill and Hill 2002), secondarily lowering the nutritional quality of the prey thereby 

reducing its dietary attractiveness to predators (Duffy and Paul 1992; Pennings et al. 

1994; Chanas and Pawlik 1995), or by irritating the mouth, gut, and stomach of predators 

(Randall and Hartman 1968).   
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Sponges are widely distributed in tropical and temperate marine systems and are 

one of the major taxa, in terms of both biomass and species diversity, found in hard-

bottom communities (Sara and Vacelet 1973).  Despite the abundance of sponges at all 

latitudes, the bulk of our understanding of how predation regulates their distribution 

comes from studies conducted in the tropics.  In tropical sponge communities, it has been 

suggested that the majority of undefended species inhabit environments such as seagrass 

beds and mangrove roots where predation pressure is minimal or absent.  Meanwhile 

species that occupy coral reefs, where predation pressure is the most intense, possess 

chemical defenses that discourage predation (Pawlik 1998).  This idea has been supported 

by studies that examined the deterrent properties of secondary metabolites from 71 

Caribbean sponge species and through manipulative experiments that transplanted 

species from seagrass and mangrove habitats to coral reefs (Pawlik et al. 1995; Dunlap 

and Pawlik 1996; Pawlik 1998).  As a result, it has been argued that sponges on tropical 

reefs produce strongly deterrent chemical compounds while species that yield palatable 

metabolites are limited to cryptic habitats on the reef or to relatively predator free 

environments such as mangroves and seagrasses (Pawlik 1997).   

Although several studies have investigated how sponge distributional patterns on 

temperate reefs are controlled by abiotic processes (Roberts and Davis 1996; Bell and 

Barnes 2000b; Bell and Barnes 2000c), the influence of predation on sponge community 

structure at temperate latitudes is unknown.  For a couple of reasons, temperate reefs 

located in the South Atlantic Bight (SAB) of the Western Atlantic provide an excellent 

opportunity to study the effects of predation on the distribution of sponges.  First, annual 

water temperatures within this region drop below the threshold for the survival of 
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scleractinian corals resulting in sponge and tunicate dominated benthic communities.  

Second, SAB hard bottom areas consist of two distinct sponge communities immediately 

adjacent to one another.  Natural reefs in the SAB are characterized by limestone ledges 

(“scarps”) that provide one to several meters of vertical, rocky relief surrounded by 

extensive areas of shifting sand (“plateaus”).  The vertical surfaces and first 1-2 m of the 

flat top of the scarp are typically densely colonized by many small, encrusting or large, 

amorphous sponge species (here after referred to as the “scarp” sponge community, 

Figure 1).  After the first 1-2 m of the flat top, the reef immediately transitions into the 

sandy environment and is inhabited predominantly by arborescent, pedunculate, and 

digitate sponge species (here after referred to as “plateau” sponge community, Figure 1).   

Unlike tropical coral reefs, where sponge communities are separated by lagoons 

or large distances, these two distinct sponge assemblages lay within a few meters of one 

another.  Although spongivorous fishes appear to have the opportunity to forage on the 

plateau sponge community, they tend to remain within the vicinity of the scarp.  As a 

result, predation intensity may be greatest along the scarp, and may contribute to shaping 

sponge community structure on temperate reefs.  Thus, the goals of this study were to 

determine: (1) if scarp and plateau sponge communities do indeed differ, (2) if predation 

pressure is higher on the scarp than on the plateau, and (3) if both of the above are true, 

does the presence or absence of sponge anti-predator defenses help to explain the sponge 

community structure on SAB reefs.   
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Methods 

Study Sites 

Three sites in the SAB were used for this study: Gray’s Reef National Marine 

Sanctuary (GRNMS) (31° 36.056 N, 80° 47.431 W), J Reef (31° 36.056 N, 80° 47.431 

W), and R2 Tower live bottom (31° 24.305 N, 80° 35.490 W).  Surveys for sponge and 

spongivorous fish species distribution and feeding assays to test sponge palatability were 

conducted at GRNMS and J Reef only.  All sites are located within 20 km of each other 

and consist of either relic scallop shell or limestone ridges of minor to moderate relief 

(projecting 1-2 m above the bottom) surrounded by large plateau areas of shifting 

sediment.  Water depth ranges from 18 to 30 m.  Bottom water temperature ranges from 

11ºC during winter to 26ºC in summer (Hunt 1974).  The limestone ridges are colonized 

by a variety of epifaunal species, which together with the scarp form a three-dimensional 

habitat occupied by a diversity of invertebrate and small cryptic fish species.  Preliminary 

surveys conducted during the summer of 2003 indicated that GRNMS, J Reef, and R2 

Tower live bottom all harbor a similar benthic invertebrate fauna.  

Sponge Community Structure and Predator Abundance 

 Surveys were conducted in the summer of 2003 and 2004 at GRNMS and J Reef 

to determine sponge distribution and abundance.  Estimates of mean sponge species 

richness and densities of individual sponge species were assessed using 0.25 m
2
 quadrats 

haphazardly placed alongside 25 m transects.  To avoid over-estimating sponge 

abundance, amorphous and digitate species were counted as a single individual until clear 

spatial separation was observed between individuals.  Scarp populations were quantified 

by transects run parallel and on top of the scarp.  Transects on the plateau were laid 
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perpendicular to the scarp and started 2 m behind the elevated side of the scarp.  A total 

of 104 quadrats were sampled from both GRNMS and J Reef; 52 quadrats each for the 

scarp and plateau habitat for both reefs.  

Similarly, 2 transects of 50 m length were run both parallel and perpendicular to 

the scarp at GRNMS and J Reef to assess predator densities on and off the ledge.  

Predation on sponges is primarily attributed to a few specialist fishes although other 

species can include sponges in their diets (Randall and Hartman 1968; Wulff 1994; 

Meylan 1998).  Spongivorous fishes, however, intentionally target sponges which 

comprise >70% of their diets (Randall and Hartman 1968).  Divers swam a 30 minute 

timed transect and recorded all spongivorous fishes present within diver vision.  Visual 

census is an efficient and reliable method of quantifying fish densities at GRNMS and J 

Reef because (1) the conspicuous anatomical features of spongivorous fishes make 

identification straightforward, and (2) water turbidity on these sites often limits side to 

side visibility to 10 m or less, ensuring that fish occurring far a field of the transect are 

not recorded.   

Sponge Chemical and Structural Defenses 

 All sponges were collected from either GRNMS or J Reef by SCUBA divers with 

the exception of Cliona celata, which was collected at these two sites as well as the R2 

Tower live bottom.  Collections were made between May and December 2004.  Samples 

of sponge tissue, up to 10 ml in volume, were removed with dive knives from larger 

sponges or by collecting whole sponges from the substrate.  Sponge samples were placed 

individually into plastic bags, and stored on ice in coolers at the surface.  Sponges were 

frozen at -80ºC upon returning to Georgia Southern University approximately four hours 
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after initial collection.  A total of 20 species were collected: 11 species from the scarp 

habitat, 8 from the plateau habitat, and one species evenly distributed across both 

habitats.  A minimum of 30 samples were collected for each species.  When possible, 

sponges were identified on the basis of morphology or spicule and tissue preparations. 

Confirmation as to the identification of each species was substantiated by Dr. Rob Van 

Soest, University of Amsterdam.    

Methods described by Pawlik et. al. (1995) and Becerro et al. (2003) were 

followed to isolate crude organic extracts and formulate foods for testing the palatability 

of sponge secondary metabolites to fishes.  For each sample, approximately a 5 ml 

volume of sponge tissue was measured by displacement of water in a graduated cylinder.  

Samples were frozen at -80˚C, lyophilized, and weighed to the nearest mg on an 

electronic balance (APX-60, Denver Instruments, Denver, CO).  Freeze-dried samples 

were crushed with mortar and pestle or cut with scissors into small pieces and extracted 

three times for 24 hours each in a 1:1 methanol:dichloromethane mixture.  Samples 

remained at 4ºC during extractions.  After the third extraction, all extracts were combined 

and filtered (P8 coarse filter paper, Fisher Scientific Company L.L.C., Pittsburgh, PA) to 

remove sponge debris.  Excess solvent was removed by rotary evaporation 

(Brinkmann/Buchi Collegiate, Eppendorf, Germany) at low heat (~20ºC) until 

approximately 5 ml remained.  The remaining 5 ml of solvent was transferred to a pre-

weighed 20 ml scintillation vial and concentrated to dryness by vacuum evaporation 

(SC210A-115, Thermo Electron Corporation, Somerset, NJ).  The vial containing extract 

was then reweighed to obtain a crude organic extract weight.  The crude organic extract 

was stored at -80ºC until further use.   
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The concentrated crude organic extract for each 5 ml replicate was dissolved in 

0.75 ml 100% methanol.  Samples were sonicated and visually inspected to ensure the 

extract had dissolved into solution.  Artificial food was created using a mixture of 7.5 g 

powdered squid mantle, 3.5 g Type I carageenan:agar (85:15), and 150 ml of distilled 

water.  The nutritional value of sponge tissue is known to influence its dietary 

attractiveness to predators (Duffy and Paul 1992; Pennings et al. 1994); therefore, the 

amount of powdered squid mantle used in food preparation was based upon the mean 

protein concentration (~20.7 mg ml
-1

) of 71 Caribbean sponge species surveyed by 

Pawlik et. al. (1995).  In 25 ml batches, the carageenan:agar, squid mantle, and distilled 

water were thoroughly mixed and heated in a microwave until boiling.  Immediately after 

heating, 4.25 ml of food mixture were poured into each vial containing the 0.75 ml 

methanol and sponge extract.  This mixture was stirred and allowed to cool.  When the 

mixture cooled, it formed a mold that was carefully removed from the vial and cut into 1 

x 1 x 1 cm cubes for feeding assays.   

To verify that this food preparation process retained the original weight of the 

extract, several cubes were lyophilized, extracted, filtered, and placed under vacuum to 

re-isolate the crude organic extract mass.  This extract was weighed and compared to the 

initial weight of the extract isolated from fresh sponge tissue.  No significant differences 

were found between the extract mass weight obtained from fresh sponge tissue and that 

re-extracted from food cubes (t = 1.44, df = 46, p = 0.08).  Thus, the volume of crude 

organic extract in the carrageen-based food matched the naturally occurring extract 

concentration of the sponge.   
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For each replicate, a control cube was prepared by the same method, but with 0.75 

ml of methanol only.  When appropriate, food coloring was added to control cubes to 

match the natural color of the crude organic extract so predatory behavior of fishes would 

not be influenced by cube color.   

Methods developed by Uriz et al. (1996) were used to prepare sponge samples for 

assays of structural defenses.  For each sample, fresh sponge tissue containing a random 

mixture of inner and outer tissue layers was cut into 1 ml pieces.  Thirty samples for each  

species were placed in a 500 ml beaker and extracted three times for 24 hours at 4ºC in 

1:1 methanol:dichloromethane.  During extractions, water mixed with methanol resulting 

in a methanol:water phase that separated from the dichloromethane phase.  As a result, 

samples were shaken two or three times during each extraction to ensure that sponge 

tissue was exposed to both phases.  Thin layer chromatography performed on a fourth 

extraction substantiated all compounds had been removed.  After the third extraction, 

excess solvent was removed and samples were rinsed three times for one minute with 

distilled water. Samples were placed on cardboard drying racks to air-dry at room 

temperature overnight allowing any remaining solvent to evaporate. All sponge pieces 

were bagged and stored at -20ºC until further use.  

For food preparation, the intact sponge tissue, with all chemical compounds 

removed, was thawed and rinsed with distilled water.  Artificial food was created using a 

concoction of 2.5 g powdered squid mantle, 1.2 g type I carageenan:agar (85:15), and 50 

ml of distilled water.  The carageenan:agar powder, squid mantle, and distilled water 

were thoroughly mixed and heated in a microwave until boiling so the carageenan:agar 

would set.  If necessary, food coloring was added to the mixture to match as closely as 
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possible, the natural color of the sponge.  After heating, sponge pieces were added to the 

food mixture, stirred, and allowed to soak until the mixture was almost solid.  Only when 

the food mixture was slightly viscous were the sponge pieces removed.  This method 

allowed for absorption of artificial food into the sponge tissue and embedded the sponge 

inside a food cube.  As a result, structural food cubes offered in my feeding assays were 

of high nutritional value because they contained natural levels of sponge protein in 

addition to the protein of the food cube recipe.  Thus, deterrence by structural elements 

found in this study was assigned as a negative response by fishes to these defenses rather 

than a result of lowering the nutritional quality of the prey (Chanas and Pawlik 1995).  

Control cubes were prepared in the same manner but without the addition of sponge 

tissue.   

All feeding assays were conducted at GRNMS or J reef.  Food cubes were 

dispensed individually to natural assemblages of reef fish.  Several control cubes were 

released first to initiate feeding activity.  Control and test cubes were then offered in a 

random sequence so fish could not habituate to a systematic pattern of deterrent cube 

release.  Divers recorded if the cube was accepted or rejected and recorded the species of 

predator responsible for consumption.  A food cube was considered unpalatable if fishes 

rejected it three or more times or if it sank to the bottom uneaten.  For both the chemical 

and structural assays, the most common generalist predatory reef fishes at GRNMS and J 

Reef were targeted.  These fishes were black seabasses (Centropristus striata), tomtates 

(Haemulon aurolineatum), and spottail pinfish (Diplodus holbrooki).  If chemical 

compounds or structural mechanisms produced by sponges are effective defenses, they 

should be aimed at generalist predators in particular because (1) they are less likely to 
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have evolved the abilities to circumvent specialized defenses, and (2) they represent the 

majority of predators on reef ecosystems (Pawlik et al. 1995; Becerro et al. 2003).  Thus, 

the results of these assays should reflect a general pattern of predator deterrence 

occurring on SAB reefs.  For all assays, a minimum of 30 control and sample cubes were 

offered for each sponge species.   

Transplantation Experiments 

To further investigate if there is a relationship between predation pressure, anti-

predator defenses, and sponge community structure on SAB reefs, reciprocal transplant 

experiments were carried out between the scarp and plateau sponge communities.  

Twenty four bricks (20 x 10 x 6 cm) were deployed at J Reef: 12 each on the scarp and 

plateau.  Six of the bricks in each habitat remained uncaged while 6 were enclosed in 

Vexar mesh (5 cm
2
 opening) cages.  Each brick contained predrilled holes in the top and 

bottom and was secured to the reef with a stainless steel rod.  The rods were sunk into 

holes drilled into the substrate with a pneumatic drill (Chicago Pneumatic, CP785H, 

Rock Hill, SC) and secured with marine epoxy.  Each pair of caged and uncaged bricks 

was placed within 1 m of each other and labeled with flagging tape. 

Three scarp species, Chondrilla nucula, Chondrosia collectrix, and Hyrtios 

violaceaus were transplanted to the plateau, and 4 plateau species, Axinella waltonsmithi, 

A. pomponiae, Desmapsamma anchorata, and Ptilocaulis walpersi were moved to the  

scarp.  Species used in these experiments were selected based on the results of feeding 

assays and their ability to tolerate subsampling (i.e. preliminary transplants revealed rapid 

mortality in transplanted Ircinia felix and Ircinia campana samples on caged bricks).  

Samples, 3-20 ml in size, depending on the species, were carefully removed from larger 
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colonies, or when appropriate, whole colonies were gently uplifted from the substrate to 

minimize tissue damage and exposure of inner tissue layers.  Samples were placed in 

plastic bags underwater, brought to the surface, and immediately emptied into large 

coolers containing aerated seawater. At sea, the volume of each sample was measured to 

the nearest 0.5 ml by displacement of seawater in a 100 ml graduated cylinder and 

returned to the cooler containing the aerated seawater.  Sponges for a single caged or 

uncaged replicate were measured, strung on monofilament line (9 kg test) ~2.5 cm apart, 

and placed into a labeled plastic bag containing aerated seawater. For example, a 

replicate for a caged scarp transplant would contain one sample each of Axinella 

waltonsmithi, A. pomponiae, Desmapsamma anchorata, and Ptilocaulis walpersi.  A total 

of 6 replicates were prepared for each treatment for the scarp and the plateau transplants.  

Sponges were returned to the bottom and attached with the monofilament line to bricks in 

the appropriate habitat and treatment within 3 hours of initial collection.  For caged 

bricks, cages were cable tied shut after the sponges were attached.  After 9 days, sponges 

were collected, placed in plastic bags, and measured as described before.  This 

experiment was repeated twice.       

Statistical Analysis 

 Differences in sponge community structure were compared with a two-way 

ANOVA using reef (GRNMS or J Reef) and habitat (scarp or plateau) as factors for the 

following variables: mean sponge species richness, overall sponge density, and the 

density of individual sponge species if the species was recorded at 3 or more sites (ie. 

GRNMS-scarp, J Reef-scarp, GRNMS-plateau, J Reef-plateau).  When an individual 

species was recorded at only two sites, a one-way ANOVA was used to compare the 
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density of that species.  The density of spongivorous fishes between habitats was 

compared with a one-way ANOVA.  Shannon-Weaver diversity (H’) and Pielou’s 

evenness indices were calculated and compared across all 4 sites and Jaccard’s 

coefficient of similarity for species presence/absence data was compared across reefs and 

between habitats (Sokal and Rohlf 1995).  

 An index of sponge chemical and structural deterrence was generated for each 

species by dividing the number of food cubes rejected by the total number offered.  Mean 

chemical and structural deterrence for the scarp and plateau sponge community was 

calculated as the percentage of food cubes rejected for all species assayed in each 

community.  To determine if mean chemical or structural deterrence differed within the 

scarp or plateau sponge community, the chemical and structural deterrence for each 

species associated with their respective community was compared with a Wilcoxon 

paired-sample test.  To evaluate if overall deterrence varied across the scarp and plateau 

sponge communities, the chemical and structural deterrence for each species was 

combined, ranked, and compared with a Kruskal-Wallis test.  Cliona celata was omitted 

from the community analyses because it was found to be in equal abundance in the scarp 

and plateau habitats. 

To determine if predation occurred on sponges transplanted between the scarp and 

plateau habitats, differences in sponge volume were compared between caged and 

uncaged treatments for each species with a Wilcoxin paired-sample test.  
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Results 

Sponge Community Structure and Predator Abundance 

 Mean sponge species richness and sponge density were similar for GRNMS and J 

Reef (Figures 2 & 3, Tables 1 & 2).  Within reef, no significant differences in mean 

sponge species richness occurred between habitats (Figure 2, Table 1).  All 4 sites 

(GRNMS-scarp, J Reef-scarp, GRNMS-plateau, J Reef-plateau) differed by <1 species  

m
-2 

(Figure 2). However, within reef sites, sponge density was significantly higher on the 

scarp than on the plateau (Figure 3, Table 2).  The marked decrease in sponge abundance 

in the plateau community is due to the absence of Chondrilla nucula, Chondrosia 

collectrix, and Scopalina ruetzleri.  Combined, these three species account for 75% of the 

sponges occurring on both GRNMS and J Reef scarps. 

The scarp at both reefs is dominated by Chondrilla nucula with this species 

responsible for ≥64% of the sponges recorded.  Ircinia felix, Chondrosia collectrix, 

Scopalina ruetzleri, and Spirastrella sp. were the four next most abundant species on the 

scarp at both reefs (Table 3).  Together, these five species account for >88% of the 

sponges colonizing the scarp.  In contrast, sponge populations on the plateau do not 

appear to be dominated by any single species or any small subset of the species present.  

The four most abundant plateau species were Axinella waltonsmithi, Axinella bookhouti, 

Cinachyrella alloclada, and Axinyssa ambrosia (Table 3), but combined, these species 

account for <35% of the sponges on the plateau. 

Sponge diversity (H’) and evenness (J) reflect the similarities in sponge 

community structure across reefs but also highlight the differences between habitats 

within reef.  Sponge diversity and evenness for J Reef and GRNMS are nearly identical 



 25 

(Table 4), but the value of these indices is nearly double on the plateau as opposed to the 

scarp (Table 5).  Again, these results are due to 5 sponge species accounting for >88% of 

the sponge populations on the scarp while the density of many species on the plateau is 

similar (Table 3).   

Of the 32 species recorded from both sites, 31 are represented at J Reef and 28 at 

GRNMS (Table 4).  Twenty-seven species were common to both reefs, 4 species were 

exclusive to J Reef, and 1 to GRNMS.  Plateau sites had greater species richness than 

scarp locations (Table 5).  Little overlap occurred in the distribution of sponge species 

between the scarp and plateau (Figure 4).  Of the 32 species found at GRNMS and J Reef 

the density of 30 species was significantly higher in either the scarp or plateau habitat.  In 

17 of these 30 cases the species was exclusive to one habitat.  Interestingly, these 30 

species are evenly split between the two habitats: 15 species are significantly more 

abundant or solely occupy the scarp and likewise 15 for the plateau (Table 5).   

The morphological characteristics of the sponges also vary with habitat.  Fifteen 

of the 21 species recorded on the scarp at GRNMS and J Reef are amorphous or 

encrusting species (Tables 3 & 5).  The majority of these species belong to the 

characteristically amorphous and encrusting sponge families of Geodidae, 

Chondrosiideae, Spongiidae, Thorectidea, Dysidea, and Aplysinellidae and are well 

represented on SAB scarps.  Aplysina fulva and Clathria prolifera, however, were 

exceptions to the predominant morphotypes occurring on the scarp.  Aplysina fulva is 

branching and Clathria prolifera is pedunculate, and both species were significantly more 

abundant on scarp (Table 3).  Meanwhile, the majority of plateau species are arborescent 

(branching), pedunculate or digitate sponges.  Fifteen of the 23 species present on the 
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plateau fell into one of these 3 categories (Tables 3 & 5).  A boring species of Cliona is 

the only encrusting phenotype that was more abundant on the plateau than on the scarp 

(Table 3). Cinachyrella alloclada was not included in this analysis because it did not fit 

into any of the morphological classifications used here.   

During routine dives I observed 5 species of spongivorous fishes at GRNMS or J 

Reef.  They were Holocanthus bermudensis (blue angelfish), Cantherhines macrocerus 

(orange-spotted filefish), Lactophrys quadricornis (scrawled cowfish), Pomacanthus 

arcuatus (gray angelfish), and Pomacanthus paru (french angelfish).  Of these 5 

however, only 2 species, H.  bermudensis and C. macrocerus, were common and 

recorded during surveys.  The density and distribution of spongivorous fishes was similar 

at GRNMS and J Reef.  Spongivorous fish were observed only on the scarp and 75% of 

the fishes recorded were H.  bermudensis (Figure 5). 

Tests for Sponge Chemical and Structural Defenses 

Food cubes containing sponge chemical extracts varied widely in their ability to 

deter predation by fishes.  Food cubes for any single sponge species assayed were neither 

consumed nor rejected 100% of the time.  A wide range of deterrence was observed in 

the scarp community.  Aplysina fulva was the most deterrent species with 91% of its food 

cubes rejected, while Hyrtios violaceaus showed the least deterrence with only 3% of its 

food cubes rejected (Figure 6).  Deterrence was not as variable for the plateau species as 

food cubes for 5 of the 8 species including Axinella pomponiae, Axinella bookhouti, 

Cinachyrella alloclada, Desmapsamma anchorata, and Ptilocaulis walpersi were all 

rejected <25% of the time (Figure 6).  



 27 

  Deterrence of fish feeding by food cubes containing intact, extracted sponge 

tissue also varied widely among species.  However, in contrast to the results for chemical 

defenses, structural deterrence by scarp sponge species was less variable than species 

assayed from the plateau.  Food cubes were rejected by fishes from 25 to 75% of the time 

for 6 of the 8 plateau species, while deterrence of fishes occurred <25% of the time for 9 

of the 11 scarp species (Figure 7). 

 Deterrence of fish feeding through chemical defenses was significantly higher 

than structural defenses for species from the scarp community (Figure 8).  No significant 

difference in mode of deterrence was detected for sponges from the plateau (Figure 8).  

When the results of the chemical and structural assays are combined, no significant 

differences in overall deterrence occurred across communities (Figure 9).  

 The trends in habitat-specific patterns of defense are correlated with sponge 

morphology.  The highest levels of chemical deterrence were observed in the aspiculate, 

amorphous and encrusting species colonizing the scarp.  Combined, chemical food cubes 

from the 8 aspiculate species, Hyrtios violaceaus, Chondrosia collectrix, Ircinia felix, 

Ircinia  campana, Dysidea fragilis, Coscinoderma lanuga, Aplysina fulva, and 

Aiolochroia crassa, deterred fishes 44.2% (± 10.8 SE) of the time.  In contrast, the lowest 

level of deterrence was found in the arborescent and pedunculate sponges inhabiting the 

plateau.  Food cubes from the 5 species in this cateogory, Axinella bookhouti, Axinella 

pomponiae, Axinella waltonsmithi, Desmapsamma anchorata, and Ptilocaulis walpersi, 

only discouraged feeding 21.4% (± 10.3 SE) of the time.  A converse pattern was 

observed for structural deterrence.  The 8 aspiculate species deterred predation only 



 28 

12.2% (± 1.7 SE), whereas food cubes for the 5 arborescent and pedunculate species were 

deterrent 41.9% (± 8.6 SE) of the time.  

Three species of fish were primarily responsible for the consumption of food 

cubes at GRNMS and J Reef.  All three species, Centropristus striata (black seabass), 

Haemulon aurolineatum (tomtate grunt), and Diplodus holbrooki (spottail pinfish), 

represent the most abundant generalist fish predators encountered on SAB temperate 

reefs.  Centropristus striata consumed the greatest percentage of food cubes and 

consumed chemical and structural cubes in equal proportions (Figure 10).  Haemulon 

aurolineatum consumed a greater number of chemical food cubes than structural, while 

the reverse was true for Diplodus holbrooki (Figure 10).   

Transplant Experiments 

All sponges transplanted across habitats showed reductions in volume during the 

9 day experiment (Figure 11).  Reductions in volume were significantly larger for 

uncaged treatments for 3 of the 4 plateau species transplanted to the scarp.  One scarp 

species transplanted to the plateau, Hyrtios violaceaus, showed significantly larger 

volume reductions in uncaged treatments (Figure 13).   

Predation scars on the plateau species transplanted to the scarp were clearly 

evident, but across sponge species different types of predators appeared to be responsible.  

Invertebrate grazing scars were apparent on Axinella waltonsmithi while fish bites were 

almost exclusively observed on Ptilocaulis walpersi.  Desmapsamma anchorata was 

preyed upon by both fishes and invertebrates.  Interestingly, no predation scars were 

evident on Hyrtios violaceaus.   
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Discussion 

Sponges are important components of marine benthic communities spanning 

tropical, temperate, and polar habitats (Dayton et al. 1974; Targett and Schmahl 1984; 

Alvarez et al. 1990; Bell and Barnes 2000b).  Until this study, abiotic processes like 

sedimentation, current regimes, and periodic disturbances from storms were considered 

the major factors influencing sponge distributional patterns on temperate reefs (Roberts 

and Davis 1996; Bell and Barnes 2000b; Bell and Barnes 2000a).  Results presented here 

demonstrate that predation and the ability of sponges to resist predation may also 

contribute to sponge community structure on temperate reefs.  These findings are in 

agreement with studies performed in the tropics demonstrating that sponges lacking 

chemical defenses may be restricted to environments where there is a relative paucity of 

predators, while chemically defended species can persist in habitats where predation is 

intense (Pawlik et al. 1995; Pawlik 1998).  The results of this study also show that 

sponges may be structurally defended, but these defenses may not be adequate in areas 

with high spongivore predation pressure.  The fact that a large majority of the sponge 

species tested here discouraged predation by generalist predators further demonstrates 

that sponges are well defended irrespective of geographic location (McClintock 1987; 

Pawlik et al. 1995; Becerro et al. 2003).   

The data presented here confirms that sponge populations on SAB reefs are 

divided into two distinct communities.  The distribution and density of sponge species 

were significantly different across the scarp and plateau communities (Table 5).  A 

disjunct distribution of spongivorous fishes was also observed between the two habitats 

with a significantly higher abundance of predators occurring on the scarp as opposed to 
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the plateau (Figure 5). Deterrence of predation by chemical defenses was found to be 

more common in sponges on the scarp than on the plateau (Figure 8).  While a positive 

correlation between the presence of chemical defenses and the abundance of fish 

predators on SAB reefs clearly exists, it should be pointed out that other factors may 

account for the high levels of chemical defenses observed in scarp sponges.   

Secondary metabolites in sponges have multiple ecological functions.  Besides 

anti-predator properties, secondary metabolites are effective anti-viral and anti-fouling 

agents and may impede the settlement of competing species (Uriz et al. 1992; Kubanek et 

al. 2002).   Much like coral reefs, space on SAB scarps is limited and competition 

between sessile organisms intense.  Sponges can enhance their competitive ability 

through allelopathy or by increasing their toxicity (Becerro et al. 1995; Thacker et al. 

1998).  Greater predation intensity on the scarp may also result in a greater frequency of 

attack.  Sponges primarily suffer partial rather than complete predation when inflicted by 

spongivorous fishes often leaving the animal with exposed wounds (Wulff 1994).  

Secondary metabolites have anti-pathogen properties (Kubanek et al. 2002) and if 

sponges are producing these compounds to neutralize infection after attack (Walker et al. 

1985), the correlation between predation intensity and the frequency of attack on scarp 

sponges may indirectly stimulate the production of these disease-resistant compounds.  In 

contrast, competition between species is lower on the plateau because sedimentation most 

likely restricts the recruitment of many sessile species that are otherwise common on 

nearby rocky substrates (Zea 1993) and the susceptibility to attack is lower due to the 

absence of many predators on the plateau.  
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The results from this study suggest that natural sponge tissue with the crude 

organic extracts removed can deter predation by generalist fishes (Figure 7).  The highest 

levels of structural deterrence were observed in the plateau sponge community (Figure 8) 

with the branching and arborescent species deterring predators 42% of the time. It has 

been suggested that these growth forms are well suited to tolerate sediment laden 

environments because their morphologies resist sediment accumulation that could lead to 

suffocation (Trammer 1983; Bell and Smith 2004).  Species possessing this phenotype 

often require spicules to stabilize their erect growth forms (Koehl 1982).  All of the 

arborescent and pedunculate species tested in this survey contained aggregations of 

spicules peripherally arranged throughout their tissue (Wells et al. 1960; Wiedenmayer 

1977; Alvarez et al. 1998).  As a result, spicules may not only provide structural support, 

but may aid in deterring generalist predators.  Indeed, this idea has been proposed before. 

The physical defense theory holds that skeletal elements not only stabilize the structure of 

an organism, but may also serve as an exaptation providing a functional defense for the 

species (Gould and Vrba 1982; Jones et al. 2005).   

The importance of physical defenses has been demonstrated in terrestrial and 

marine plants (Coley and Aide 1991; Pennings and Paul 1992; Hay et al. 1994) and 

parallels have been drawn between herbivory and grazing on sponges (Burns and Ilan 

2003).  Both plants and sponges are abundant, diverse, conspicuous, lack behavioral 

defense, and use structural elements such as lignified and proteinaceous fibers or 

mineralized compounds such as calcium carbonate or siliceous spicules to deter predation 

(Coley and Aide 1991; Hay et al. 1994; Burns and Ilan 2003; Hill et al. 2005).  In 

addition, structural elements are often poor in nutritional quality and difficult to digest 
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and may thus inadvertently reduce the dietary attractiveness of the prey to predators 

(Duffy and Paul 1992; Chanas and Pawlik 1995).    

Previous studies have produced contradictory results that structural elements in 

sponges can provide an effective defense against predators (Chanas and Pawlik 1995; 

Burns and Ilan 2003; Hill et al. 2005).  Earlier studies, however, investigated the 

palatability of spicules in isolation or in unnatural orientations that disrupted the integrity 

of the sponge tissue (Chanas and Pawlik 1995; Burns and Ilan 2003; Hill et al. 2005).  

Two inherent problems arise from these earlier methodologies.  First, spicules in their 

natural form are often concentrated in a particular region of the sponge skeleton in a 

specific orientation.  This organization is disrupted when the skeleton is disassociated and 

reinserted into food cubes (Burns and Ilan 2003).  Second, additional structural elements 

such as the outer cortex of the sponge and the fibrous network of spongin are eliminated 

and provide an incomplete test of sponge structural elements.   

The integrity of the sponge tissue used in feeding assays for this study was 

maintained because the preparation of sponge structural elements in food cubes did not 

disassociate or remove parts of the sponge skeleton.  Therefore, I feel this study provided 

a comprehensive test of sponge structural defenses against generalist predators.  The 

evidence that spicules enhanced deterrence was supported by the high palatability of the 

8 aspiculate species.  The deterrence of fishes by food cubes formed from these 8 species, 

Hyrtios violaceaus, Chondrosia collectrix, Ircinia felix, I. campana, Dysidea fragilis, 

Coscinoderma lanuga, Aplysina fulva, and Aiolochroia crassa, were all below 12% 

(Figure 7).   
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As demonstrated in the feeding assays, no species, in either chemical or structural 

assays was consumed or rejected 100% of the time.  Several factors may account for this 

variability.  First, the predation history of the individuals sampled for each sponge 

species was unknown.  It has been demonstrated that after simulated attack a sponge can 

increase both the production of secondary metabolites and spicules (Walker et al. 1985; 

Hill and Hill 2002).  An induced response such as this would contribute to population-

level variability in anti-predator defenses.  Second, the inability of sponge defenses to 

deter fish predators 100% of the time may also be a product of the predators used in this 

study.  Predators can exhibit species specific responses to prey defenses (Pennings et al. 

1994).  In my study, Haemulon aurolineatum consumed more chemical than structural 

food cubes while the opposite was true for Diplodus holbrooki (Figure 10).  Fish 

assemblages on SAB reefs varied across reefs, feeding trials, and diving days.  This 

variation in predator diversity and feeding behavior may explain why food cubes for any 

single sponge species were neither wholly consumed nor rejected.  Interestingly, this 

result points out the importance of having sponge chemical and structural defenses that 

are effective against a diversity of generalist predators (Pawlik et al. 1995; Becerro et al. 

2003).  

At first, it would appear from the results of the feeding assays that the distribution 

of sponge anti-predator defenses is not correlated with predation intensity on SAB reefs 

(Figure 9).  The transplant experiments however, provide evidence that predation on 

sponges does occur in both habitats and that predation is more intense on the scarp than 

on the plateau (Figure 11).  In addition to spongivorous fishes, invertebrates preyed upon 

the plateau species transplanted to the scarp.  Predation by invertebrates was 
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substantiated when one replicate set of transplanted plateau species was recovered from a 

crevice within the scarp rather than from its brick.  When removed from the crevice, only 

the central core of the sponge Desmapsamma anchorata remained while all periphery 

tissue had been consumed.  This type of reduction occurred often for individuals of D. 

anchorata and is highly indicative of crab predation.  Although invertebrate predators 

were not quantified across habitats, it is likely that predators such as crabs, starfish, and 

sea urchins are more abundant along the scarp because of the greater topographic 

complexity of this habitat.  Unfortunately, whether fishes or invertebrates preyed upon 

Hyrtios violaceaus (transplanted from the scarp to the plateau) could not be determined 

because replicates for H. violaceaus never suffered from partial predation.  When 

recollected, individuals of H. violaceaus were either entirely absent or matched the initial 

volume of the individual before transplantation.   

The higher levels of sponge predation by both fishes and invertebrates may 

warrant the greater employment of chemical defenses by scarp sponges (Figure 8).  

Spongivorous fishes and echinoids can tolerate the consumption of spicules (Randall and 

Hartman 1968; Birenheide et al. 1993; Wulff 1994; Pawlik 1998).  Similarly, crabs may 

be less deterred by spicules because they can avoid spicule consumption through their 

feeding behavior (Waddell and Pawlik 2000a) or tolerate them when combined with 

chemically attractive prey (Hill et al. 2005).  Indeed, it appears that invertebrates, in 

general, are less deterred by spicules than generalist reef fishes (Waddell and Pawlik 

2000b; Waddell and Pawlik 2000a; Burns and Ilan 2003; Jones et al. 2005) but are 

equally so, or more readily deterred by chemical extracts than fishes (Waddell and Pawlik 

2000a; Burns et al. 2003).  In my study, generalist fishes reacted negatively to 
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structurally intact sponge tissue with the chemical compounds removed.  Therefore, 

sponge structural defenses may deter many reef fishes occurring on the plateau, but may 

not be adequate against predators inhabiting the scarp that have evolved the ability to 

either tolerate or remove the defensive potential of structural components.  Thus, 

chemical defenses may be a necessity for sponges to exist on the scarp.   

What was not considered in this study was the synergistic effect of chemical and 

structural defenses on predators.  Most studies that have examined sponge community 

structure in relation to predation and anti-predator defenses have done so by testing 

chemical and structural defenses in isolation rather than in combination.  Evidence has 

been provided from several sponge species that chemical and structural defenses may 

interact to enhance deterrence against predators and that the effectiveness of these 

defenses may be underestimated when tested separately (Burns and Ilan 2003; Hill et al. 

2005; Jones et al. 2005).  No sponge species in my study was completely undefended, 

either chemically or structurally, from predators.  This finding allows for the possibility 

of synergy in terms of defensive mechanisms and I would recommend that future studies 

use food cubes containing both structural and chemical elements to further advance our 

understanding of the relationship between anti-predator defenses and sponge community 

structure.   

In three important ways, the results of this study expand our understanding of how 

predation and anti-predator defenses may influence sponge community structure.  First, 

contrary to what has been thought (Chanas and Pawlik 1995; Chanas and Pawlik 1996), 

structurally intact sponge tissue is an effective defense against generalist reef fishes.  

Although the primary role of spicules is to stabilize the skeleton of a sponge (Koehl 
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1982), they may also be an exaptation for defense against generalist reef fishes.  Second, 

predation by invertebrates may influence sponge distributional patterns more than 

previously thought.  Predation on sponges on tropical reefs has primarily been attributed 

to spongivorous fishes (Dunlap and Pawlik 1996; Pawlik 1998) and turtles (Meylan 

1998) even though evidence has suggested that invertebrates can restrict the distribution 

of some sponge species in arctic (Dayton et al. 1974) and seagrass benthic communities 

(Wulff 1995).  The results of my study indicate that both spongivorous fishes and 

invertebrates can regulate the distribution of sponges.  Lastly, my findings agree with 

those reported from tropical systems that chemical defenses in sponges may be more 

important in deterring predators than structural mechanisms in habitats with high  

predation intensity (Pawlik et al. 1995; Waddell and Pawlik 2000a).  Thus, chemically 

undefended species may be restricted to habitats where predation intensity is lower even 

when those habitats are found in close proximity.   
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Table 1. Two-way ANOVA for mean species richness of sponges at two reefs    

(GRNMS and Reef) and two habitats (scarp and plateau) within each reef. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source SS d.f. F P 

Reef, R 0.58 1 0.17 0.67 

Habitat, H 4.04 1 1.198 0.27 

R x H 1.73 1 0.514 0.47 

Within 688.01 204   

Total 694.37 207   
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Table 2. Two-way ANOVA for mean density of sponges at two reefs (GRNMS            

and Reef) and two habitats (scarp and plateau) within each reef.  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source SS d.f. F P 

Reef, R 81.25 1 1.17 0.28 

Habitat, H 19578.48 1 282.49 <0.001 

R x H 3.76 1 0.05 0.81 

Within 14138.42 204   

Total 33801.92 207   
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Table 3. Summary of distributional data, morphological classification, and skeletal 

structure for sponges found at GRNMS and J Reef.  Habitat listed refers to the reef zone 

in which that sponge species is significantly more abundant or solely occurs: Sc = Scarp, 

Pl = Plateau, and ND = no difference in density between habitats. Density of individual 

species equals mean number of individuals ± SD recorded at the 2 scarp sites (GRNMS-

scarp, J Reef-scarp) and 2 plateau sites (GRNMS-plateau, J Reef plateau).  N = 104 

quadrats of 0.25 m
2
.  Morphological classifications for sponges based upon descriptions 

by Esnault and Rutzler (1997): A = Amorphous/Massive, E = Encrusting, B = Branching, 

P = Pedunculate, D = Digitate, and N/C = not classified.  For skeletal structure A = 

Aspiculate and S = Spiculate.  Species listed by habitat and in order of highest to lowest 

density within habitat.  

Sponge Species Habitat 
Scarp 

Density 

Plateau 

Density 
Morphotype Skeleton 

Chondrilla nucula Sc 17.5 ± 9.5  E S 

Ircinia felix Sc 2.4 ± 1.5 0.3 ± 0.6 A A 

Chondrosia collectrix Sc 1.9 ± 3.1  E A 

Scopalina ruetzleri Sc 1.4 ± 1.6  E S 

Spirastrella sp. Sc 1.4 ± 1.8 <0.1 ± 0.1 E S 

Aplysina fulva Sc 0.7 ± 1.2 0.1 ± 0.7 B A 

Ircinia campana Sc 0.5 ± 0.8 <0.1 ± 0.1 A A 

Hyrtios violaceaus Sc 0.5 ± 0.9 <0.1 ± 0.1 A A 

Clathria prolifera Sc 0.4 ± 0.7 <0.1 ± 0.1 P S 

Dysidea fragilis Sc 0.2 ± 0.7  A A 

Coscinoderma lanuga Sc 0.2 ± 0.6  A A 

Geodia gibberosa Sc <0.1 ± 0.1  E S 

Aiolochroia crassa Sc <0.1 ± 0.1  A A 

Myriastra sp. Sc <0.1 ± 0.1  E S 

Smenospongia cerebriformis ND 0.1 ± 0.4 <0.1 ± 0.1 A A 

Cliona celata ND <0.1 ± 0.1 <0.1 ± 0.1 E S 

Aplysilla longispina ND <0.1 ± 0.1 <0.1 ± 0.1 E A 

Axinella waltonsmithi Pl <0.1 ± 0.1 1.0 ± 1.1 P S 

Cinachyrella alloclada Pl <0.1 ± 0.1 0.9 ± 1.3 N/C S 

Axinella bookhouti Pl <0.1 ± 0.1 0.6 ± 0.9 P S 

Dark finger sp. Pl  0.5 ± 0.9 D S 

Unidentified sponge Pl <0.1 ± 0.1 0.5 ± 0.8 N/C N/C 

Axynissa ambrosia Pl  0.5 ± 0.8 D S 

Higginsia strigilata Pl  0.4 ± 0.7 P S 

Raspailia sp. Pl  0.4 ± 0.7 D S 

Axinella pomponaie Pl <0.1 ± 0.1 0.3 ± 0.6 B S 

Desmapsamma anchorata Pl <0.1 ± 0.1 0.3 ± 0.5 B S 

Clathria carteri Pl  0.2 ± 0.5 P S 

Cliona sp. Pl  0.2 ± 0.8 E S 

Ciocalypta gibbsi Pl  0.2 ± 0.5 D S 

Lissodendoryx stigmata Pl  0.1 ± 0.4 A S 

Ptilocaulis walpersi Pl <0.1 ± 0.2 0.1 ± 0.3 B S 
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Table 4. Sponge species richness, Shannon-Weaver diversity (H’), Pielou’s evenness (J), 

Jaccard’s similarity coefficient (Sj) for GRNMS and J Reef.  Values are listed 

individually by reef and totals pooled for both reefs. N = 104 quadrats of 0.25 m
2
 for 

GRNMS and J Reef sponge populations.     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification GRNMS J Reef 
GRNMS &  

J Reef 

Scarp Species 16 19 21 

Plateau Species 19 22 24 

Total Species 28 31 32 

Diversity (H’) 2.08 2.31 2.13 

Evenness (J) 0.61 0.67 0.65 

Reef Similarity (Sj)   0.87 

Habitat Similarity within reef (Sj) 0.53 0.62 0.61 
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Table 5. Sponge species richness, species distribution, Shannon-Weaver diversity (H’), 

Pielou’s evenness (J), and Jaccard’s similarity coefficient (Sj) for the scarp and plateau 

habitats at GRNMS and J Reef. N = 104 quadrats of 0.25 m
2
 for scarp and plateau sponge 

populations.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification Scarp Plateau 

Total Species 21 24 

Number of sponge species that were significantly more 

abundant or solely occurred in this habitat 
15 15 

Number of amorphous and encrusting species 15 8 

Number of arborescent, pedunculate, and digitate species 6 15 

Diversity (H’) 1.40 2.75 

Evenness (J) 0.49 0.91 

Across Reef Similarity (Sj) 0.76 0.72 
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Figure 1. Diagram of a representative South Atlantic Bight temperate reef. Photographs 

demonstrate the contrasts in sponge morphology that occurs across habitats. Schematic 

representation of SAB reef by Barans and Henry, 1984. Photograph of scarp sponges 

from Greg McFall.   
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Figure 2. Mean sponge species richness (number of species 0.25m

-2
 ± SD) of sponge 

populations on the scarp versus the plateau at GRNMS and J Reef.  N = 52 quadrats of 

0.25 m
2
 for GRNMS-scarp, J Reef-scarp, GRNMS-plateau, and J Reef-plateau.  

Significant differences for mean sponge species richness between reefs (GRNMS and J 

Reef) and habitats (scarp and plateau) are listed in Table 1. 
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Figure 3. Mean sponge density (no. of individuals 0.25m

-2
 ± SD) of sponge populations 

on the scarp and plateau habitats at GRNMS and J Reef.  N = 52 quadrats of 0.25 m
2
 for 

GRNMS-scarp, J Reef-scarp, GRNMS-plateau, and J Reef-plateau. Significant 

differences for mean sponge density between reefs (GRNMS and J Reef) and habitats 

(scarp and plateau) are listed in Table 2. 
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Figure 4. Distribution of the 32 sponge species recorded at GRNMS and J Reef. Each 

point represents the mean number of individuals m
-2

 for each species.  The density of 

each sponge species on the scarp is plotted against the density for that species on the 

plateau.   N = 104 quadrats of 0.25 m
2
 for both species density on the scarp and for the 

plateau.   
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Figure 5. Mean density (± SE) of spongivorous fish populations on the scarp and plateau 

habitats from GRNMS and J Reef.  N  = 4, 50 m transects for each habitat.  
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Figure 6. Deterrence of reef fishes at GRNMS and J Reef by food cubes containing the 

chemical extracts of sponges. Percentage rejected is based upon the number of food cubes 

going uneaten out of a minimum of 30 offered.  Fish, in all cases, consumed all 30 

control cubes.  Species grouped by habitat and listed in order of highest to lowest 

deterrence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 20 40 60 80 100
Percentage rejected 

Scarp Species 

                       Aplysina fulva 

                    Dysidea fragilis                                                   

                 Clathria prolifera 

 Aiolochroia crassa 

                Chondrilla nucula 

                           Ircinia felix 

                   Ircinia campana 

          Coscinoderma lanuga   

               Scopalina ruetzleri 

           Chondrosia collectrix 

               Hyrtios violaceaus     

Shared Species 

            Cliona celata 

Plateau Species 

                         Raspailia sp. 

           Axinella waltonsmithi 

               Axinyssa ambrosia 

             Axinella pomponiae 

               Axinella bookhouti 

    Desmapsamma anchorata  

         Cinachyrella alloclada                                        

              Ptilocaulis walpersi      



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 7. Deterrence of reef fishes at GRNMS and J Reef by food cubes containing whole 

sponge tissue with the secondary metabolites removed.  Percentage rejected is based 

upon the number of food cubes going uneaten out of a minimum of 30 offered. Fish, in 

all cases, consumed all 30 control cubes.  Species grouped by habitat and listed in order 

of highest to lowest deterrence. 
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Figure 8. Mean deterrence (± SE) of reef fishes by food cubes containing the chemical 

extracts of sponges or whole, chemically extracted sponge tissue.  Mean deterrence is 

based upon the percentage of food cubes rejected across species tested in chemical or 

structural assays.  Significant differences in deterrence between assays were tested with a 

Wilcoxon paired-sample test.  The number of sponge species assayed was 11 for the 

scarp and 8 for the plateau.  Cliona celata was excluded from the analysis because it was 

equally abundant in both communities.  
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Figure 9. Combined mean deterrence (± SE) of reef fishes by food cubes containing the 

chemical extracts of sponges and whole, chemically extracted sponge tissue.  Mean 

deterrence is based upon the percentage of total food cubes rejected for each sponge 

species tested in both assays.  Significant differences in mean deterrence across the scarp 

and plateau sponge communities were tested with a Kruskal-Wallis test.  The number of 

sponge species assayed was 11 for the scarp and 8 for the plateau.  Cliona celata was 

excluded from the analysis because it was equally abundant in both communities.  
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Figure 10. Consumption by fishes of food cubes containing the crude organic extracts of 

sponges or whole sponge tissue with secondary metabolites removed.  Percent 

consumption equals the number of food cubes consumed by each fish species divided by 

the total number of food cubes consumed.  A total of 475 crude organic extract cubes 

were consumed and 386 structural food cubes were consumed.  Significance based on 

chi-square analysis comparing the total number of food cubes consumed in either assay: 

NS, non significant; *, P < 0.05. 
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Figure 11. Mean percent change (± SE) in volume after nine days for three scarp species 

transplanted to plateau sponge communities and four plateau species transplanted to scarp 

habitats. N  = 11 for scarp species and N  = 12 for plateau species. Sc = scarp species, Pl 

= plateau species. Sample means were compared using a Wilcoxon paired-sample test: 

NS, non significant, *, P < 0.05. 
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CHAPTER 2 

LATITUDINAL DIFFERENCES IN PREDATION PRESSURE AND ANTI-

PREDATOR DEFENSES: AN EXAMPLE FROM SPONGE COMMUNITIES. 

Introduction 

A commonly accepted tenet of biogeography is that the intensity of both 

herbivory and predation are inversely proportional to latitude (Pianka 1966; Vermeij 

1978; Bertness et al. 1981; Menge and Lubchencho 1981; Coley and Aide 1991; 

Pennings et al. 2001).  This biogeographic pattern has been attributed to the greater 

diversity of consumers present at lower latitudes, although evidence supporting this 

hypothesis is mostly anecdotal (Vermeij 1978; Bertness et al. 1981; Pennings et al. 2001).   

Concordant with the concept that the intensity of both herbivory and predation are 

inversely correlated with latitude is the notion that tropical prey species are better 

defended from predators than those in temperate regions (Bakus and Green 1974; 

Vermeij 1978; Bolser and Hay 1996; Pennings et al. 2001).  Direct support for this idea is 

rare, but has been provided recently from a study investigating latitudinal differences in 

the palatability of 10 conspecific salt marsh plants ranging from the subtropics to high 

latitude temperates (Pennings et al. 2001).  These investigators demonstrated that a 

diversity of herbivores showed a general preference for northern salt marsh plants as 

opposed to southern salt marsh plants.  Their results are consistent with previous studies 

that documented a similar, inverse relationship in plant palatability for more distantly 

related species (ie., same genus, family, or order) tested from tropical and temperate plant 

communities (Coley and Aide 1991; Bolser and Hay 1996).  The evidence supporting this 

broad biogeographic pattern in plant defenses at the species level is significant because 
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exceptions have been documented in a few orders of plants and marine algae (van 

Alstyne and Paul 1990; Targett et al. 1992; Swihart et al. 1994; Bolser and Hay 1996).  

To date, the majority of studies investigating latitudinal variation in predator-prey 

interactions have been confined to herbivory on terrestrial plants, marine algae, and 

seagrasses (van Alstyne and Paul 1990; Coley and Aide 1991; Pennings and Paul 1992; 

Schupp and Paul 1994; Meekan and Choat 1997).  Only a few studies have investigated 

the biogeographic relationship between the intensity of carnivory and the presence of 

prey defenses (Bakus and Green 1974; Vermeij 1978; Bertness et al. 1981; Menge and 

Lubchencho 1981).  Although results of these studies also suggest a decrease in predation 

pressure and the prevalence of prey defenses with increased latitude, none of the above 

cited comparisons have quantified predation intensity nor tested the palatability of 

conspecific prey across regions.  In fact, the only study making within species 

comparisons of prey palatability against carnivores across a latitudinal gradient suggests 

that prey species from temperate regions may be as well defended as those from the 

tropics (Becerro et al. 2003).  The paucity of information in this area as well as the 

contradictory results obtained for those studies that have been completed, highlights the 

need for additional comparisons to determine how the intensity of carnivory and the 

incidence of prey defenses correspond with latitude.  

Sponges are important contributors to marine benthic communities at all latitudes 

(Dayton et al. 1974; Diaz et al. 1990; Bell and Barnes 2000b) and many parallels have 

been drawn between predation on sponges and herbivory.  For example, both plants and 

sponges are abundant, diverse, and often conspicuous.  Both lack behavioral defenses, but 

possess chemical compounds that deter consumers  (Levin and York 1978; McClintock 
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1987; Coley and Aide 1991; Schulte and Bakus 1992; Pawlik et al. 1995; Becerro et al. 

2003).  To date, there is no evidence supporting the hypothesis that temperate sponges are 

subjected to more intense predation than tropical species because predation pressure has 

never been quantified outside of the tropics.  Likewise, no comparisons have been 

conducted within species to determine if an inverse relationship between sponge 

chemical defenses and latitude exists.   

Temperate reefs in the South Atlantic Bight (SAB) of the United States provide 

an excellent opportunity to examine the relationship between predation pressure and 

chemical defenses in sponge species that have been studied in tropical coral reef systems.  

Several tropical Atlantic and Caribbean sponge species and spongivorous fish predators 

occur on SAB temperate reefs (Chapter 1).  Therefore, by using sponge species that co-

occur on SAB and tropical Atlantic/Caribbean reefs, the goals of this study were to: (1) 

quantify the abundance of sponges and spongivorous fish predators on temperate reefs of 

the SAB, (2) test the palatability of sponge secondary metabolites to generalist fishes of 

SAB reefs, and (3) compare statistically the results obtained in this temperate system with 

similar studies conducted on the same sponge species in the tropics.  Thus, this study 

provides an initial assessment of how predation pressure on sponges and sponge chemical 

deterrence may vary with latitude. 

Methods 

Study Sites 

Two reefs in the South Atlantic Bight, Gray’s Reef National Marine Sanctuary 

(GRNMS; 31° 36.056 N, 80° 47.431 W) and J Reef (31° 36.056 N, 80° 47.431 W), were 

used for this study.  Both reefs are ledges, typical of the temperate Western Atlantic 
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continental shelf and provide between 1-2 m of vertical relief along a narrow ridge.  On 

the elevated side of the ledge the hard substrate becomes flat and quickly transitions into 

an extensive area of soft substrata due to a shifting layer of sediment 1-5 cm thick. SAB 

reefs are colonized by a variety of epifaunal species, which together with the substrate 

form a three-dimensional habitat occupied by a diversity of species of invertebrates and 

small cryptic fishes.  GRNMS and J Reef are separated by 15 km and have similar depth 

profiles averaging 18 to 20 m.  Although water temperatures reach 26°C during summer, 

many tropical species cannot survive the winter temperature of 11°C (Hunt 1974).  

Sponge and Predator Abundance 

Surveys were completed in the summer of 2003 and 2004 at GRNMS and J Reef 

to assess sponge and spongivorous fish species richness and abundance.  To provide the 

best estimate of sponge and fish populations on these reefs, 25 and 50 m transects were 

run parallel and perpendicular to the ledge.  For sponge distributional data, I recorded the 

total number of individuals for each species present in 0.25 m
2
 quadrats haphazardly 

placed alongside the 25 m long transect.  A total of 104, 0.25 m
2
 quadrats were sampled 

at both GRNMS and J Reef: 52 quadrats for the sponge population on top of the ledge 

and 52 for the adjacent sponge community on the soft sediment habitat.  Spongivorous 

fish populations were assessed with a 50 m swim transect in which divers recorded all 

spongivorous fishes present along the transect for 30 min.  Visual census is an efficient 

and reliable method of quantifying fish densities at GRNMS and J Reef because the 

conspicuous anatomical features of spongivorous fishes make identification 

straightforward, and water turbidity on these sites often limits side to side visibility to 10 

m or less, ensuring that fish occurring far a field of the transect are not recorded.  
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To determine if sponge community structure and predator abundance is similar 

between GRNMS and J Reef, mean sponge species richness, sponge density, and 

spongivorous fish density were compared between reefs with a student’s t test.  If no 

significant differences occurred between reefs, the data were pooled so that mean values 

for SAB reefs could be compared to results for mean sponge species richness and sponge 

and spongivorous fish densities published from tropical studies.   

Palatability of Sponge Crude Organic Extracts 

 Over twenty species of sponges are known to be shared between the tropical and 

temperate Western Atlantic (Wells et al. 1960; van Soest 1984; Alvarez et al. 1998). Nine 

of these species, Chondrilla nucula, Chondrosia collectrix, Cinachyrella alloclada, 

Ircinia felix, Aplysina fulva, Aiolocroa crassa, Ptilocaulis walpersi, Scopalina ruetzleri, 

and Clathria prolifera were found at GRNMS and J Reef.  The palatability of these 

species to generalist fish predators was assessed.  Clathria prolifera was included in the 

analysis because Rhaphidolphus juniperinus is considered a junior synonym of C. 

prolifera (van Soest, pers. comm.) and has been used in similar Caribbean surveys.   

Collections were made May through December 2004.  Samples of sponge tissue, 

≤10 ml in volume, were obtained by either subsampling large sponges or removing whole 

sponges from the substrate.  In either case, samples were placed individually into plastic 

bags and stored on ice in coolers at the surface.  Sponges were frozen at -80ºC upon 

returning to the lab, approximately 3 to 4 hours after initial collection.  A minimum of 30 

samples were collected for each species.  Sponges were identified on the basis of 

morphology or spicule and tissue preparations.  Identifications were confirmed by Dr. 

Rob van Soest, University of Amsterdam.    
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Methods described by Pawlik et. al. (1995) and Becerro et. al. (2003) were 

followed to isolate crude organic extracts and formulate foods for testing the palatability 

of sponge secondary metabolites to fishes.  For each sample, approximately 5 ml volumes 

of sponge tissue were measured by displacement of water in a graduated cylinder.  

Samples were frozen at -80˚C, lyophilized, and weighed to the nearest mg on an 

analytical balance (model APX-60, Denver Instruments, Denver, CO).  Freeze dried 

samples were crushed into small pieces and extracted three times at 4ºC for 24 hours by 

immersing the sample in a 1:1 methanol:dichloromethane (MeOH:DCM) mixture. All 

extracts were combined and passed through filter paper (P8 coarse, Fisher Scientific 

Company L.L.C., Pittsburgh, PA) to remove sponge debris.  Excess solvent was removed 

by rotary evaporation (Brinkmann/Buchi Collegiate, Eppendorf, Germany) at low heat 

(<30ºC) until approximately 5 ml remained.  The remaining 5 ml of solvent was 

transferred to a pre-weighed 20 ml scintillation vial and concentrated to dryness by 

vacuum evaporation (model SC210A-115, Thermo Electron Corporation, Somerset, NJ).  

The dried extract was stored at -80ºC until further use.   

Concentrated crude organic extracts obtained from each sponge were dissolved in 

0.75 ml of 100% methanol.  Samples were sonicated and visually inspected to ensure the 

extract had dissolved into solution.  Artificial food was created using a mixture of 7.5 g 

powdered squid mantle, 3.5 g Type I carageenan:agar (85:15), and 150 ml of distilled 

water.  The amount of powdered squid mantle used in food preparation was based upon 

the mean protein concentration (~20.7 mg ml
-1

) of 71 Caribbean sponge species surveyed 

by Pawlik et. al. (1995) and thus matched the amount of squid mantle used in Pawlik’s 

tropical feeding assays.  In 25 ml batches, the carageenan:agar, squid mantle, and 
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distilled water were thoroughly mixed and heated in a microwave to the boiling point.  

Immediately after heating, 4.25 ml of food mixture was poured into each scintillation vial 

containing the 0.75 ml methanol and extract.  This mixture was stirred and allowed to 

cool forming a food mold.  When cooled, the mold was carefully removed from the vial 

and cut into 1 x 1 x 1 cm cubes for feeding assays.   

For each replicate, control cubes were prepared by the same method, but with 

0.75 ml of methanol only.  When appropriate, food coloring was added to control cubes 

to match the color of the food cube containing the crude extract so predatory behavior of 

fishes would not be influenced by cube color.  Control cubes were readily consumed in 

all feeding assays. 

Feeding assays were conducted in situ at GRNMS and J reef.  Food cubes were 

dispensed individually to natural assemblages of generalist reef fish predators.  The 

benefit of using generalist predators is that they provide a reliable estimate of the 

effectiveness of these defenses against a diversity of predators (Pawlik et al. 1995; 

Becerro et al. 2003).  In addition, the feeding behavior of fishes used in these assays was 

appropriate for the study because they habitually “mouth” or “taste” their prey before 

consuming it.  Even in instances when fishes attempted to ingest the entire food cube, 

they would often regurgitate it whole providing another opportunity for a different 

species of predator to consume it.  

Several control cubes were released first to initiate feeding activity and then 

control and test cubes were offered in a random sequence so fish could not habituate to a 

systematic pattern of deterrent cube release.  Divers recorded if the cube was consumed 

or rejected.  A food cube was considered unpalatable if fishes rejected it three or more 
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times or if it sank to the bottom.  Assays targeted the most common generalist and 

opportunistic reef fishes at GRNMS and J Reef, including seabasses (Centropristus 

striata), tomtate grunts (Haemulon aurolineatum), and spottail pinfish (Diplodus 

holbrooki).  For all sponge species assayed, a minimum of 30 samples were tested.  In 

this study, an index of chemical deterrence for each sponge species was created by 

dividing the total number of food cubes consumed by the total number of food cubes 

offered.   

Statistical Comparisons with Published Results from the Tropics 

sponge and predator abundance 

To determine if sponge species richness, mean species richness (number of 

species m
-2

), and density (number of individuals m
-2

) differ between temperate and 

tropical reefs, the results of this study were compared to a survey completed by Schmahl 

(1990) in the Florida Keys. Likewise, results for spongivorous fish species richness and 

density obtained here were compared with data from the Florida Keys (Hill 1998).  In 

both surveys, the density of sponges and spongivorous fishes was enumerated as the 

number of individuals per m
2
.  Schmahl (1995) used 1 m

2
 quadrats to quantify sponge 

populations in the tropics so I pooled the data obtained from every 4 consecutive 0.25 m
2
 

quadrats to standardize my sponge distributional data to number per m
2
.  Differences in 

mean sponge species richness and sponge and spongivorous fish density between the 

Florida Keys and SAB were compared with a one way ANOVA.   

palatability of sponge crude organic extracts 

To determine if palatability of sponges differs with latitude, the levels of 

consumption obtained in this study were compared to published data from feeding assays 
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conducted in the tropics with the bluehead wrasse, Thalassoma bifasciatum (Pawlik et al. 

1995).  Although palatability of tropical sponge extracts was assessed in aquaria rather 

than in the field, both studies tested the deterrence of sponge extracts to generalist 

predators.  If secondary metabolites produced by sponges are effective anti-predator 

defenses, they should be aimed at generalist predators in particular because (1) they are 

less likely to have evolved mechanisms to circumvent specialized chemical defenses, and 

(2) they represent the majority of predators on reef ecosystems (Pawlik et al. 1995; 

Becerro et al. 2003).  The total number of food cubes consumed for each sponge species 

was compared across latitude with a chi-square test using William’s continuity correction 

(Sokal and Rohlf 1995).  To determine if overall chemical deterrence varied between 

these tropical and temperate sponge populations, the mean consumption of food cubes 

was calculated across all 9 species assayed and overall deterrence evaluated with a 

Wilcoxon signed-ranks test (Sokal and Rohlf 1995).  

Results 

Sponge and Predator Abundance 

grnms and j reef 

 A total of 32 sponge species were recorded at GRNMS and J Reef.  Of these, 27 

were present at both sites while four species, Aiolochroia crassa, Myriastra sp., Aplysilla 

longispina, and Cliona celata, were only recorded at J Reef and one species, Geodia 

gibberosa, was exclusive to GRNMS.  Two species of spongivorous fishes, Holacanthus 

bermudensis and Cantherhines macrocerus, were recorded at both reefs.  No significant 

differences in mean sponge species richness, sponge density, and spongivorous fish 

density were detected between GRNMS and J Reef (Table 6).  Therefore, data from these 
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2 sites were pooled and the means for SAB reefs compared to published results from 

tropical studies (Schmahl 1990; Hill 1998).  

statistical comparisons with published results from the tropics 

Sponge species richness was lower on the temperate Atlantic reefs, but the density 

of both sponge species and individuals was significantly higher than on the tropical reefs 

(Table 7).  The greater abundance of sponges on SAB reefs is largely explained by three 

encrusting species, Chondrilla nucula, Chondrosia collectrix, and Scopalina ruetzleri, 

common at both latitudes.  Collectively, they account for >60% of the sponge population 

on SAB reefs with a mean density of 42.5 (± 44.5 SD) individuals m
-2

 (Chapter 1). On 

Florida Keys reefs, each of these species have a density of <1 m
-2

 (Schmahl 1990).   

Both spongivorous fish species richness and density were significantly lower on 

temperate as opposed to tropical reefs (Table 7).  Although other species, such as 

Pomacanthus paru and Pomacanthus arcuatus, have been observed on SAB reefs, their 

occurrence is rare and they were not recorded during my surveys.   

Palatability of Sponge Crude Organic Extracts 

grnms and j reef 

 Chemical extracts obtained from all 9 species assayed in this study deterred 

generalist reef fishes to some degree, however, effectiveness was highly variable across 

species.  Aplysina fulva was the most deterrent while Cinachyrella alloclada and 

Ptilocaulis walpersi were the least deterrent.  Predator deterrence in Chondrilla nucula 

was highly variable with exactly 50% of its food cubes consumed.   
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statistical comparisons with published results from the tropics 

Of the 9 species tested, 5 (Ptilocaulis walpersi, Scopalina ruetzleri, Cinachyrella 

alloclada, Ircinia felix, and Aiolocroa crassa) were significantly less deterrent to 

generalist fish predators if they were from temperate as opposed to tropical reefs (Figure 

12). No significant differences in palatability were detected for Chondrilla nucula, 

Chondrosia collectrix, Clathria prolifera, and Aplysina fulva (Figure 12). Pooling the 

data for food cube consumption across the 9 species assayed showed that the mean 

deterrence of fishes by chemical extracts was significantly lower (Wilcoxon signed-ranks 

test, ts = 1, p = <0.0039) for temperate as compared to tropical sponges (Figure 13). 

Discussion 

 Few studies have been conducted to test the hypothesis that (1) there is an inverse 

relationship between predation pressure and latitude and (2) that lower predation pressure 

at higher latitudes corresponds with a reduction in prey anti-predator defenses (Bertness 

et al. 1981; Coley and Aide 1991; Pennings et al. 2001).  In sponges, the idea that tropical 

species are better defended chemically than their temperate counterparts was first 

proposed over 30 years ago (Bakus and Green 1974), but subsequent studies have 

demonstrated that secondary chemistry is common and important in sponges at all 

latitudes (McClintock 1987; Pawlik 1997; Becerro et al. 2003; Burns et al. 2003).  Data 

presented here, combined with published results from tropical studies, support the 

hypothesis that predation pressure on sponges is lower at higher latitude and that this 

reduction corresponds with a decreased investment into prey chemical defenses.   



 64 

Sponge and Predator Abundance 

The significantly higher density of sponges and lower density of spongivorous 

fishes on two temperate Atlantic reefs of the SAB suggests that there may be lower 

predation pressure on sponges on temperate as opposed to tropical reefs (Table 7).  The 

hypothesis that predation pressure is reduced on temperate reefs is further supported by 

the sponge community structure.  For example, sponge populations on SAB reefs are 

conspicuously dominated by the encrusting species, Chondrilla nucula (Chapter 1).  

Considerable evidence suggests that C. nucula is a favored prey species of angelfishes, 

turtles, and other spongivorous fishes (Randall and Hartman 1968; Meylan 1998; Pawlik 

1998), yet this is the most abundant species occurring on SAB reefs accounting for ~50% 

of the sponge assemblage (Chapter 1).  In comparison, on tropical Atlantic reefs, the 

abundance of this species is low with a density <1 individual m
-2

 (Schmahl 1990).  It has 

been demonstrated that in the absence of spongivorous predators, C. nucula can rapidly 

overgrow coral reefs and become a top spatial competitor (Hill 1998).  No differences in 

the ability of C. nucula to chemically deter fish predators were observed across temperate 

and tropical studies (Figure 12), thus the differences in density of C. nucula between high 

and low latitude probably reflect lower predation pressure.  

The lower diversity of spongivorous fishes on SAB reefs (Table 7) may equate to 

a lower frequency of attack for some sponge species.  Spongivorous fish species exhibit 

feeding preferences for the prey species they consume (Randall and Hartman 1968; Wulff 

1994).  Only two species, Holocanthus bermudensis, and Cantherhines macrocerus, were 

recorded during my transects on two temperate reefs.  In the survey completed by Hill 
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(1998) he recorded a total of five angelfish species.  Thus, predation pressure on some 

sponge species may be alleviated on the temperate reefs studied here.  

Palatability of Sponge Crude Organic Extracts 

Although temperate sponges showed lower chemical deterrence of fish predators 

overall (Figure 13), some species (Chondrilla nucula, Chondrosia collectrix, Clathria 

prolifera, and Aplysina fulva) showed the same level of deterrence as they did in tropical 

assays (Figure 12).  Although the explanation for these differential responses across 

species is unclear, secondary metabolites in sponges serve other ecological functions in 

addition to predator deterrence.  Secondary metabolites produced by sponges are 

effective anti-viral and anti-fouling agents and impede the settlement of spatial 

competitors (Kubanek et al. 2002).  Sponge populations on tropical and temperate reefs 

may be subjected to differing levels of spatial competition, temperature, water turbidity, 

nutrient availability, disease, and UV exposure, all of which may alter the production of 

secondary chemistry (Becerro et al. 1995; Turon et al. 1996; Targett and Arnold 1998).  

As a result, factors unrelated to predation may exert an influence on sponge secondary 

chemistry.  If sponge populations on tropical and temperate Atlantic reefs are recruiting 

from genetically distinct pools, they may have evolved independently under these varying 

selective pressures (Targett and Arnold 1998; Becerro et al. 2003; Burns et al. 2003).  

However, if sponge populations in the tropical and temperate Atlantic are in panmixia 

then differences in sponge chemical deterrence may be in response to differing post-

settlement cues or environmental stresses.  

It has been suggested that the production of these chemical compounds is 

metabolically expensive (Paul 1992).  Although rare in marine systems, the induction of 
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chemical defenses is known for some seaweeds (Harvell 1990; Cronin and Hay 1996).  A 

high degree of variability in the production of chemical defenses has been exhibited by 

sponges (Swearingen and Pawlik 1998; Assmann et al. 2000), but whether these defenses 

are inducible or constitutive remains unknown.  Aplysina fistularis has been shown to 

exude up to 100x the active metabolites after simulated attack (Walker et al. 1985), but it 

is unclear if this is in response to predation or to prevent infection of the wound.  If 

production of these compounds represents an inducible defense, and sponges on 

temperate reefs are subjected to a lower frequency of attack than those in the tropics, this 

may account for the lower chemical deterrence in temperate sponge.   

Interestingly, my results contrast with findings reported by Becerro et al. (2003).  

They conducted a total of 44 tropical-temperate comparisons by testing food cubes from 

11 pairs of distantly related sponges (i.e. from the same genus, family or order; 1 tropical 

Indo-Pacific and 1 temperate Mediterranean species for each pair) to 4 different groups of 

generalist reef fishes.   They detected no significant differences in overall chemical 

deterrence between tropical and temperate sponges and even found temperate species to 

be significantly more deterrent in 23% of their comparisons.  In contrast, I found no 

instances where temperate sponges were significantly more deterrent than their tropical 

conspecifics (Figure 12).  The reasons for these discrepancies in deterrence are unclear, 

but may illustrate the difference of working with distantly related species as opposed to 

conspecifics.  Interestingly, Becerro et. al. (2003) did find a significantly higher 

concentration of crude organic extract in the tropical sponge population.  Differences in 

the amount of crude organic extract were not compared in this study.    
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Both the study by Pawlik et al. (1995) and my study, tested chemical extract 

palatability against generalist reef fishes that are abundant in their respective locations, 

but only one species was used in the tropical feeding assays while a diversity of predators 

was used in the temperate study.  It has been demonstrated that overall patterns of 

generalist fish behavior are similar between tropical and temperate reefs (Becerro et al. 

2003; Burns et al. 2003), but species specific responses to anti-predator mechanisms can 

also occur (Pennings et al. 1994; Waddell and Pawlik 2000b).  The results presented here 

for the tropical-temperate comparison would be misleading if the generalist predator used 

in tropical assays, Thalassoma bifasciatum, is less tolerant to sponge chemical extracts 

than the generalist predators used in the temperate assays.  This situation would result in 

chemical deterrence for tropical sponges being overestimated.  This scenario is unlikely, 

however, because it is believed that tropical predators have evolved a greater tolerance to 

anti-predator mechanisms than their temperate counterparts (Cronin et al. 1997).  If the 

production of chemical defenses in conspecific sponges is equivalent across tropical and 

temperate reefs it would be anticipated that tropical predators would consume more food 

cubes than their temperate counterparts.  This did not occur and suggests that differences 

in chemical production, rather than variability in predator response, is the most 

parsimonious explanation for the differences in predator deterrence observed at the two 

latitudes.  

It should also be noted that predation by invertebrates is a significant source of 

sponge mortality (Dayton et al. 1974; Wulff 1995; Wright et al. 1997) and a shift from 

fish to invertebrate predation on sponges may occur at higher latitude (Dayton et al. 

1974; McClintock 1987).  Invertebrate predation was not quantified in this survey, but 
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may be of greater significance on temperate SAB reefs.  If the sponge species used in this 

study are producing compounds targeted for predators different from those included in 

my feeding assays (i.e. invertebrates), the observed differences in sponge palatability 

between the tropical sites and the two SAB reefs may not necessarily represent lower 

deterrence, but adjustments to a different suite of predators. 

Conclusions 

This analysis supports the hypothesis that predation pressure on sponges by fishes 

is lower at higher latitude and that this reduced predation intensity corresponds with a 

decrease in chemical defenses that deter these predators.  These findings agree with those  

conducted on gastropods, decapods, and insects indicating predation pressure by 

carnivores is reduced (Jeanne 1979; Bertness et al. 1981; Heck and Wilson 1987) and a 

concomitant reduction in prey anti-predator defenses occurs at higher latitude (Vermeij 

1978).  Not only does my study agree with these earlier findings, but extends them by 

demonstrating a quantitative reduction in the density of carnivores on temperate as 

opposed to tropical reefs and by providing experimental evidence that this difference 

coincides with a decrease in chemical defenses for prey species shared across these 

locations.  Furthermore, my results corroborate those conducted with plants and marine 

alga (Targett et al. 1992; Bolser and Hay 1996) showing that differences in chemical 

deterrence across latitudes do not occur in all prey species.  For some species of plants, 

algae, and sponges, it appears that factors unrelated to predation, such as competition 

(Thacker et al. 1998) and pathogen resistance (Kubanek et al. 2002), may be a proximate 

cause of these defenses.  However, the relationship between carnivore predation pressure, 

prey defenses, and latitude documented in this study, combined with those obtained from 
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plant-herbivore systems, support a broad geographic pattern of declining predation 

pressure and prey chemical defenses with increased latitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 

Table 6. Total sponge species richness, mean (± SD) sponge species richness, mean (± 

SD) sponge density, and spongivorous fish species richness and mean (± SE) density on 

two SAB reefs. Differences between sites in sponge mean species richness and 

spongivorous fish density were compared using a student’s t test.  For sponge 

distributional data N = 104, 0.25 m
2
 quadrats for each site.  For spongivorous fish data,  

N = 4, 50 m long transects for each site.  

 Sponge Spongivorous Fish 

 

Location 

Species 

richness 

 Species  

m
-2 

 Individuals 

m
-2 

Species 

richness 

Individuals  

m
-2
 

GRNMS 28 10.0. ± 1.4 73.2 ± 45.0 2 0.14 ± 0.04 

J Reef 31 9.3 ± 1.5 69.6 ± 48.1 2 0.20 ± 0.08 

Significance - p = 0.10 p = 0.46 - p = 0.62 

t - 1.642 0.737 - 0.525 
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Table 7. Sponge species richness, mean (± SD) sponge species richness, mean (± SD) 

sponge density, and spongivorous fish species richness and mean (± SE) density on 

tropical and temperate Atlantic reefs. Tropical Atlantic data for sponge composition is 

modified from Schmahl (1990) and for spongivorous fishes from Hill (1998).  Data for 

sponge distributions and spongivorous fish densities only include surveys completed on 

reefs at 13-18 m depth because this depth is comparable for South Atlantic Bight reefs. 

Differences between mean sponge species richness, sponge density, and spongivorous 

fish density were compared using one way ANOVA.  For sponge distributional data N = 

160, 1 m
2
 quadrats for tropical and N = 208, 0.25 m

2
 quadrats (52 m

2
) for temperate 

reefs.  For spongivorous fish data, N = 26 transects for tropical and N = 8, 50 m long 

transects for temperate surveys.  

 Sponge Spongivorous Fish 

 

Location 

Species 

richness 

 Species  

m
-2 

 Individuals  

m
-2 

Species 

richness 

Individuals 

m
-2
 

Tropical 84 8.0 ± 3.2 12.8 ± 6.35 5 0.29 ± 0.05 

Temperate  32 9.7 ± 1.5 71.4 ± 46.9 2 0.18 ± 0.02 

Significance - p = 0.004 p < 0.001 - p < 0.001 

F - 8.598 75.902 - 17.696 
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Figure 12. Consumption of food cubes by reef fishes containing the crude organic 

extracts of 9 sponge species shared between the tropical and temperate Atlantic. Tropical 

assays used Thalassoma bifasciatum while temperate assays used natural assemblages of 

reef fish on SAB reefs.  Significant differences between tropical and temperate 

palatability were determined with a chi-square analysis (NS = not significant; * = x
2 
≥ 

3.85, p < 0.05). Data for tropical Atlantic chemical deterrence modified from Pawlik et. 

al (1995).  In all cases, N ≥ 30 replicates for both tropical and temperate assays.    
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Figure 13. Mean deterrence (± SE) of generalist reef fishes by food cubes containing the 

crude organic extracts of 9 conspecific sponges from tropical and temperate Atlantic 

reefs.  Percent consumed is based on the mean level of deterrence for all 9 species tested 

from either location.  The difference in mean consumption was compared with a 

Wilcoxon signed-ranks test.  
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APPENDICES 

A. Mean density (no. of individuals 0.25 m
-2

 ± SD) of all sponge species recorded at 

GRNMS and J Reef.  Density for all four sites is listed.  Differences in densities between 

reefs, GRNMS and J Reef, and between habitat, scarp and plateau, were compared with a 

one-way ANOVA for species recorded at 2 sites or with a two-way ANOVA for species 

found at 3 or more sites.  For all two-way ANOVAs no significant interactions occurred 

between Reef and Habitat, except for Clathria prolifera and Ptilocaulis walpersi.  

Significant differences between reefs or habitats are listed. N = 52 for all 4 sites. 

Sponge Species 
GRNMS 

Scarp 

J Reef 

Scarp 

GRNMS 

Plateau 

J Reef 

Plateau 

Difference 

between 

Reefs 

Difference 

between 

Habitats 

Chondrilla nucula 18.1 ± 9.9 16.9 ± 8.9   NS  

Ircinia felix 2.7 ± 1.6 2.2 ± 1.4 0.5 ± 0.7 0.2 ± 0.6 NS P = 0.001 

Chondrosia collectrix 1.3 ± 2.3 2.6 ± 3.7   NS  

Scopalina ruetzleri 1.0 ± 2.5 1.8 ± 1.8   NS  

Spirastrella sp. 1.7 ± 2.2 0.8 ± 1.1  0.1 ± 0.3 P = 0.001 P = 0.001 

Hyrtios violaceaus 0.6 ± 1.1 0.4 ± 0.8 0.02 ± 0.1  NS P = 0.001 

Ircinia campana 0.4 ± 0.7 0.6 ± 0.9 0.1 ± 0.3 0.05 ± 0.2 NS P = 0.001 

Aplysina fulva 0.4 ± 0.9 0.8 ± 1.3  0.2 ± 0.9 P = 0.001 P = 0.001 

Clathria prolifera 0.7 ±0.9 0.1 ± 0.3 0.2 ± 0.5  P = 0.001 P = 0.001 

Dysidea fragilis 0.4 ± 1.0 0.03 ± 0.2   P = 0.001  

Smenospongia 

cerebriformis 
0.2 ± 0.5 0.1 ± 0.3 0.2 ± 0.1 0.04 ± 0.2 NS NS 

Coscinoderma lanuga 0.2 ± 0.7 0.1 ± 0.4   NS  

Aplysilla longispina   0.03 ± 0.1  0.02 ± 0.1 NS NS 

Geodia gibberosa 0.03 ± 0.2      

Aiolochroia crassa  0.03 ± 0.1     

Myriastra sp.  0.1 ± 0.3     

Cliona celata  0.1 ± 0.2  0.1 ± 0.2  NS 

Axinella waltonsmithi  0.1 ± 0.3 1.2 ± 1.2 0.9 ± 0.9 NS P = 0.001 

Axinella bookhouti   0.6 ± 0.9 0.7 ± 0.8 NS  

Cinachyrella alloclada 0.05 ± 0.3  0.8 ± 1.2 1.0 ± 1.1 NS P = 0.001 

Raspailia sp.   0.4 ± 0.8 0.4 ± 0.7 NS  

Ciocalypta gibbsi   0.2 ± 0.5 0.2 ± 0.5  NS  

Axynissa ambrosia   0.5 ± 0.7 0.5 ± 0.8 NS  

Dark finger sp.   0.6 ± 1.2 0.3 ± 0.6 NS  

Unidentified sponge   0.6 ± 1.0 0.3 ± 0.6 NS  

Higginsia strigilata   0.5 ± 0.8 0.3 ± 0.6 NS  

Clathria carteri   0.2 ± 0.4 0.3 ± 0.6 NS  

Axinella pomponaie 0.03 ± 0.1  0.4 ± 0.7 0.2 ± 0.4 NS P = 0.001 

Ptilocaulis walpersi 0.1 ± 0.3 0.03 ± 0.1  0.2 ± 0.4 NS P = 0.05 

Desmapsamma 

anchorata 
 0.1 ± 0.1 0.4 ± 0.5 0.3 ± 0.5 NS P = 0.001 

Cliona sp.   0.4 ± 0.9 0.1 ± 0.5 NS  

Lissodendoryx sigmata   0.2 ± 0.4 0.1 ± 0.3 NS  
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B. Mean percentage and volume of crude organic extract produced by each sponge 

species tested in chemical assays. N ≥ 30, 5 ml samples for each species. N/A = freeze-

dried data not available.  

Sponge Species 
Sponge freeze-

dried weight (g) 

Extract 

(g) 

 Extract as % 

of dry mass 

Extract volume 

(mg extract/ml 

of sponge) 

Chondrilla nucula 1.22 0.17 14.19 34.63 

Ircinia felix 1.27 0.10 7.80 19.56 

Chondrosia collectrix 1.21 0.08 6.96 16.85 

Scopalina ruetzleri 1.22 0.23 11.95 46.92 

Hyrtios violaceaus 1.29 0.14 10.42 28.30 

Ircinia campana N/A 0.10 N/A 19.21 

Aplysina fulva 1.01 0.19 19.39 38.10 

Clathria prolifera 0.85 0.08 9.17 15.68 

Dysidea fragilis 1.47 0.08 5.86 16.40 

Coscinoderma lanuga 1.16 0.05 4.01 9.28 

Aiolochroia crassa 1.26 0.12 9.69 24.40 

Cliona celata 2.83 0.34 13.18 67.97 

Axinella waltonsmithi 1.02 0.17 17.26 33.64 

Axinella bookhouti 0.89 0.16 18.13 31.98 

Cinachyrella alloclada 1.15 0.14 12.53 28.79 

Raspailia sp. N/A 0.17 N/A 34.92 

Axynissa ambrosia 2.16 0.15 8.55 30.53 

Axinella pomponaie 0.93 0.18 18.89 36.33 

Ptilocaulis walpersi 0.76 0.16 23.10 32.60 

Desmapsamma 

anchorata 
0.88 0.23 25.89 45.15 


